Research article | Open Access
International Journal of the Pursuit of Excellence in Leadership 2025, Vol. 5(2) 41-51
pp. 41 - 51
Publish Date: December 31, 2025 | Single/Total View: 0/0 | Single/Total Download: 0/0
Abstract
The purpose of this study is to apply one of the artificial intelligence methods, the Extreme Learning Machine (ELM), to the collected dataset for the determination of sport character. In this research, an artificial neural network model trained with ELM has been developed to identify sport characters. Performance analyses have been conducted in terms of classification accuracy following the training and testing of the model. The population of the study consisted of physical education teachers employed in institutions. The sample has been determined through simple random sampling and comprised a total of 262 teachers, including 184 males and 78 females. The dataset has been collected using a Personal Information Form and the Sport Character Scale (SCS), and subsequently processed through ELM. The ELM has been applied to train an artificial neural network with 500 repeated training and testing experiments with varying numbers of hidden layer neurons. The highest training accuracy has been achieved at 96.89% when the number of hidden layer neurons has been set to 120, while the highest testing accuracy has been obtained at 65.98% when the number of neurons has been set to 100. The experimental results show that promising and acceptable outcomes have been achieved when the number of hidden layer neurons in the ELM-trained artificial neural network has been adjusted between 100 and 120.
Keywords: Sport character, extreme learning machine, physical education
Öz
Bu araştırmanın amacı spor karakterinin belirlenmesi için yapay zekâ yöntemlerinden biri olan aşırı öğrenme makinesinin toplanan verilere uygulanmasıdır. Bu çalışmada spor karakteri belirlenmesi için aşırı öğrenme makinesi (ELM) ile eğitilen yapay sinir ağı modeli geliştirilmiştir. Modelin eğitim ve testi sonucunda performans analizleri sınıflandırma doğruluğu açısından yapılmıştır. Araştırmanın evrenini, kurumlarda görev yapan beden eğitimi öğretmenleri oluşturmaktadır. Örneklem, basit seçkisiz örnekleme yöntemi ile belirlenmiş olup; 184’ü erkek, 78’i kadın olmak üzere toplam 262 öğretmenden meydana gelmiştir. Bu araştırmada veri seti, Kişisel Bilgi Formu, Spor Karakter Ölçeği (SKÖ) aracılığıyla toplanmış ve aşırı öğrenme makinesi (ELM) ile eğitildikten sonra belirlenmiştir. ELM, oluşturulan veri setinde farklı gizli katman nöron sayıları ile 500 tekrarlı eğitim ve test sürecine tabi tutulmuş ve en yüksek eğitim başarısı gizli katman nöron sayısı 120 olarak ayarlandığında %96.89 ve test başarısı 100 nöron olarak ayarlandığında %65.98 olarak elde edilmiştir. Deneysel çalışma kullanılan veri seti üzerinde ELM ile eğitilen yapay sinir ağında gizli katman nöron sayısının 100-120 olarak ayarlandığında kabul edilebilir sonuçlar elde edildiğini göstermektedir.
Keywords: Anahtar Kelimeler: Spor karakteri, aşırı öğrenme makinesi, beden eğitimi.
APA 7th edition
Duzgunce, A. (2025). Spor Karakterinin Aşırı Öğrenme Makinesi ile Belirlenmesi. International Journal of the Pursuit of Excellence in Leadership, 5(2), 41-51.
Harvard
Duzgunce, A. (2025). Spor Karakterinin Aşırı Öğrenme Makinesi ile Belirlenmesi. International Journal of the Pursuit of Excellence in Leadership, 5(2), pp. 41-51.
Chicago 16th edition
Duzgunce, Ahmet (2025). "Spor Karakterinin Aşırı Öğrenme Makinesi ile Belirlenmesi". International Journal of the Pursuit of Excellence in Leadership 5 (2):41-51.
Adır, Y. (2017). Fiziksel etkinlik oyunlarının ortaöğretim düzeyindeki öğrencilerin karakter gelişimi üzerine etkisi [Yayımlanmamış yüksek lisans tezi]. Aksaray Üniversitesi.
Alpar, R. (2013). Uygulamalı çok değişkenli istatistik yöntemler (4. baskı). Detay Yayıncılık.
Aydoğan, Y., Özyürek, A., ve Akduman, G. G. (2015). Okul öncesi dönem çocuklarının spora ilişkin görüşlerinin incelenmesi. International Journal of Sport Culture and Science, 3(Special Issue 4), 595–607.
Basu, K., Sinha, R., Ong, A., & Basu, T. (2020). Artificial intelligence: How is it changing medical sciences and its future? Indian Journal of Dermatology, 65(5), 365–370.
Bindra, S., & Jain, R. (2024). Artificial intelligence in medical science: A review. Irish Journal of Medical Science (1971-), 193(3), 1419–1429.
Camiré, M., & Trudel, P. (2010). High school athletes’ perspectives on character development through sport participation. Physical Education and Sport Pedagogy, 15(2), 193–207.
Düzgünce, A. (2024). Beden eğitimi öğretmenlerinin spor karakterinin ve çoklu zekâ alanlarının yapay zekâ kullanılarak incelenmesi [Yayımlanmamış doktora tezi]. Atatürk Üniversitesi.
El Khatib, M., El Baradie, M., & Alrashedi, M. B. (2024). AI capable emotional robot teacher as a new economical trend in education. 2024 2nd International Conference on Cyber Resilience (ICCR), 1–6.
Giudici, P. (2018). Fintech risk management: A research challenge for artificial intelligence in finance. Frontiers in Artificial Intelligence, 1, 1–6.
Görgüt, İ., ve Tuncel, S. (2017). Spor karakter ölçeğinin Türkçeye uyarlanması. Spormetre Beden Eğitimi ve Spor Bilimleri Dergisi, 15(3), 149–156.
Heper, E., Koca, C., Ertan, H., Kale, M., Terek, S., Karabudak, E., ve Ertan, H. (2012). Spor bilimleri ile ilgili kavramlar ve sporun tarihsel gelişimi. Spor Bilimlerine Giriş, 1, 11–12.
Hilpisch, Y. (2020). Artificial intelligence in finance. O’Reilly Media.
Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2004). Extreme learning machine: A new learning scheme of feedforward neural networks. In 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541) (ss. 985–990).
Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1–3), 489–501.
Huang, W., Hew, K. F., & Fryer, L. K. (2022). Chatbots for language learning—Are they really useful? A systematic review of chatbot‐supported language learning. Journal of Computer Assisted Learning, 38(1), 237–257.
Huang, W., Hew, K. F., & Fryer, L. K. (2022). Chatbots for language learning—Are they really useful? A systematic review of chatbot‐supported language learning. Journal of Computer Assisted Learning, 38(1), 237–257.
Jakubowski, J. K. (2013). Making character education a reality: An investigation of secondary teachers' perspectives toward implementation [Unpublished master’s thesis]. California State University, Long Beach.
Jang, C.-Y. (2013). Development and validation of the sport character scale [Unpublished doctoral dissertation]. The University of Utah.
Kiran, M. S., Siramkaya, E., Esme, E., & Senkaya, M. N. (2022). Prediction of the number of students taking make-up examinations using artificial neural networks. International Journal of Machine Learning and Cybernetics, 13(1), 71–81.
Miller, L. E. (2003). An investigation on whether interscholastic athletes should be required to participate in character education programs [Unpublished doctoral dissertation]. United States Sports Academy.
Nikolskaia, K., & Naumov, V. (2020). Artificial intelligence in law. 2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), 1–6.
Nti, I. K., Adekoya, A. F., Weyori, B. A., & Nyarko-Boateng, O. (2022). Applications of artificial intelligence in engineering and manufacturing: A systematic review. Journal of Intelligent Manufacturing, 33(6), 1581–1601.
Ofoghi, B., Zeleznikow, J., MacMahon, C., & Dwyer, D. (2013). Supporting athlete selection and strategic planning in track cycling omnium: A statistical and machine learning approach. Information Sciences, 233, 200–213.
Özbey, S., Türkoğlu, D., ve Buldur, A. B. (2014). Okul öncesi öğretmenlerinin karakter eğitimi yetkinlik inançlarının öğretmenlerin çocuk sevme düzeyleri ve bazı değişkenler ile ilişkisinin incelenmesi. Değerler Eğitimi Dergisi, 12(27), 323–344.
Pham, D. T., & Pham, P. (1999). Artificial intelligence in engineering. International Journal of Machine Tools and Manufacture, 39(6), 937–949.
Qin, H., Qian, S., Cai, X., & Guo, D. (2024). Athletic skill assessment and personalized training programming for athletes based on machine learning. Journal of Electrical Systems, 20(9s), 1379–1387.
Raaijmakers, S. (2019). Artificial intelligence for law enforcement: Challenges and opportunities. IEEE Security & Privacy, 17(5), 74–77.
Rastrollo-Guerrero, J. L., Gómez-Pulido, J. A., & Durán-Domínguez, A. (2020). Analyzing and predicting students’ performance by means of machine learning: A review. Applied Sciences, 10(3), 1042.
Rzevski, G. (2024). Artificial intelligence in engineering: Past, present and future. WIT Transactions on Information and Communication Technologies, 10, 1–9.
Salehi, H., & Burgueño, R. (2018). Emerging artificial intelligence methods in structural engineering. Engineering Structures, 171, 170–189.
Surden, H. (2019). Artificial intelligence and law: An overview. Georgia State University Law Review, 35(4), 1305–1346.
Tazegül, Ü. (2014). The investigation of the effect of sports on personality. The Journal of Academic Social Science Studies, 25(1), 537–544.
Theodoulides, A., & Armour, K. M. (2001). Personal, social and moral development through team games: Some critical questions. European Physical Education Review, 7(1), 5–23.
Van Eetvelde, H., Mendonça, L. D., Ley, C., Seil, R., & Tischer, T. (2021). Machine learning methods in sport injury prediction and prevention: A systematic review. Journal of Experimental Orthopaedics, 8(1), 1–15.
Weiss, M. R., Smith, A. L., & Stuntz, C. P. (2008). Moral development in sport and physical activity. Human Kinetics.
Worsey, M. T., Espinosa, H. G., Shepherd, J. B., & Thiel, D. V. (2021). One size doesn't fit all: Supervised machine learning classification in athlete-monitoring. IEEE Sensors Letters, 5(3), 1–4.
Yalçın, H. F. (1995). Beden eğitimi öğretmeni el kitabı. Gazi Üniversitesi Yayınları.
Yücel, A. S., Atalay, A., ve Gürkan, A. (2015). Sporda şiddet ve saldırganlığı etkileyen unsurlar. Uluslararası Hakemli Psikiyatri ve Psikoloji Araştırmaları Dergisi, 2(2), 68–90.
Zou, Y., Wang, C., & Jiao, Q. (2022). Research on athlete training effect evaluation based on machine learning algorithm. Mathematical Problems in Engineering, 2022(1), 3707879.